Enhancing the Building Rating System in Australia Report

The advent of the 21st century saw a paradigm shift in the manner in which governments, civil society, and scientists perceived global warming. This greater awareness trail blazed a situation where sustainability in almost every industry was a clarion call. In infrastructure, it was not business as usual. Economists warn of depletion of natural resources in light of an and human destruction (Chandratilake and Dias, 2013).

In the recent past, there have been numerous improvements in the worlds sustainability agenda. Countries and regional bodies have set objectives to promote the reduction of Green House Gas (GHG) release as a matter of urgency. To arrive at this target, progressive building industry principles have been adopted concerning building operations, design, and performance to solidify achievements of sustainability. From this perspective, it is crucial to develop an adequate green building-rating tool in Australia that meets international environmental building standards.

Don't use plagiarized sources. Get Your Custom Essay on
Enhancing the Building Rating System in Australia Report
Just from $13/Page
Order Essay

While many rating agencies have developed standards for use in the construction industry, there is hardly any resemblance. Green star has an important role to play in helping Australias building market to internalize undesired effects on the environment and, consequently, to accomplish more sustainable infrastructures. Furthermore, the strength of the Australian economy, in comparison to the rest of the developed economies, sets favorable conditions to encourage higher levels of capital investment and sustainable development in the infrastructure sector. Other national agencies play similar roles albeit using slightly different standards. Does this mean that Green Star is inferior considering the popularity of the other comparable agencies such LEED and BREEAM? The study indicates that to be untrue and further sanitizes the act. Consequently, this work will argue that improving the standard for Green Star rating system is fundamental in order to achieve higher grades of environmental performance and speed up competitiveness in a consistently dynamic global economy.

Nomenclature
Green building rating system: Green Star is a quality benchmark designed to grant accreditation to building projects in design and construction to enhance sustainability.
Sustainable building: Sustainable building is a concept in that instills minimalistic environmental impacts through sustained and documented principles in the building, construction, and architectural industry.
Green Star: Green Star is Australia has trusted standard for sustainable building and construction whose rating tools comprehensively encompass public and private institutions.
LEED: LEED is the largest US largest green building-rating tool with for Green Star but whose aims and intentions are similar.
BREEAM: BREEAM rates and develops standards for sustainable building in United Kingdom. Similarly, it has developed rating tools that span all sorts of constructions with the aim of reducing emissions and enhancing probity in resource usage.
Australia Green Building Council: A not for profit industry association that drives the adoption of green building practices in Australia.
Introduction
Project Definition
To be sustainable, buildings should take optimal and responsible resources from the environment in terms of and ensure durability. Sustainable development is increasingly highlighted because the buildings have a constantly increasing impact on the environment in terms of resources uptake during construction and inordinate emissions detrimental to the environment. This project analyses Green Star rating scheme; which is prepared in order to identify weaknesses (i.e. in comparison to international standards LEED and BREEAM); and to identify ways to popularize sustainable building practices in Australia through encouragement of improvement of Green Star. The weaknesses may be tackled by structural readjustments that will also be discussed.

Project Goals
To benchmark the rating criteria that Green Star uses in order to assess and grant accreditation in the building stock in Australia. To concentrate specifically in the comparative analysis of the major building rating tools: LEED (Leadership in Energy and Environmental Design) and BREEAM (Building Research Establishment Environmental Assessment) from the United States and United Kingdom Green Building Councils, respectively.
To propose course of actions in order to make a significant enhancement in Green Star rating tool. More particularly, to identify weaknesses in Green Star scheme and suggest more adequate responses.
How the Project will benefit
This project will contribute towards the betterment and enhancement of Green Star rating scheme with the aim of promoting leadership in the development of sustainable building stock in Australia. More specifically, benefits for the building industry will be in the shape of innovative design and construction. The project aims to boost Australias standing in OECD countries in relation to sustainable construction and environmental performance. Additionally, the project may make a stronger case to allow for smoother transition towards a demanding regulation that advocates for a low-carbon economy. At the same time, benefits for the Australia community may be economic (i.e. employment, companies bottom line, investment and economic growth) environmental (i.e. reduction on GHG emissions, energy efficiency and use of less damaging construction materials) and social (i.e. healthcare stakeholders, community development)

Project Deliverable
The project deliverable will result in a course of action for Green Star rating towards the development of environmental criteria that favor the reduction in GHG emissions, the execution of a Life Cycle Assessment (LCA) in construction materials and higher levels in energy efficiency. At the same time, the project will deliver recommendations on Green Star rating in order to produce a more comprehensive assessment based on the consideration of a : design review and construction review. On the other hand, improvements in the bottom line for companies under Green Star certification, via reduction in building operation costs and higher return on investment via an increase in property values and more tenant attraction.

In addition, a reduction in environmental and social impacts in the building stock sector in Australia. More specifically, community and workers will have access to healthier places to live and work.

There is a shift in all industries towards environmental friendly operations. The housing and construction industry has also been affected by this trend. People want houses that have the minimum possible negative influence on the environment. Global warming and the resultant climate change have caused consumers to be more conscious in their purchasing (Johnson, Whittington & Scholes, 2011). Companies are now forced to invest heavily in Research and Development to create innovative green housing solutions. Such innovations could reduce the amount of waste sent to landfill, increase recycling, create energy efficient homes and create renewable energy. The current industry leaders are also leaders in innovation and environmental consciousness (Portalatin, Koepe, Rostoski & Shouse, 2010). There are various certifications and awards issued annually to encourage this trend. Companies literally compete for these since it proves to consumers that they are doing something about the situation. The Code for Sustainable Homes in the UK, Australia Green Building Council in Australia among others world over, serve this purpose. Many industry players have adopted this principles based approach (Johnson, Whittington & Scholes, 2011). However, the effectiveness of the props (Green Star, LEED, and BREEAM for instance) in serving this purpose is questionable (Portalatin, Koepe, Rostoski & Shouse, 2010).

Literature Review
Garnaut (2011) indicates that the building sector contributes immensely towards Greenhouse Gas (GHG) emissions, utilizing approximately 40% of the worlds energy and producing approximately 30% of the carbon emissions. These figures are the largest of any single industry globally as of 2011. At the same time, sustainability has become the buzzword of the academic and the business fields. In particular, it is possible to identify two large trends in the development of sustainable infrastructure in the last decades (Hall, Daneke, & Lenox, 2010). As noted above, the catchphrase is affecting the consumer markets in construction with consumers favouring environmentally friendly companies en masse (Johnson, Whittington & Scholes, 2011).

The Period 1990 2000: the start of the 1990s puts large emphasis in sustainable design, which was also joined, to the notion of buildings being eco-friendly, environmentally friendly and unobtrusive. A crucial element for building performance during this phase was founded on a cost efficient evaluation (Hall, Daneke, & Lenox, 2010). According to Portalatin, Koepe, Rostoski & Shouse (2010), cost effectiveness was the sole competitive arena in light of burgeoning industries world over occasioned by growth in economies. Global warming occasioned by carbon emissions were not a critical factor to governments. Only scientists were concerned (Roodman & Lenssen, 1995).
The Period 2000 2010: the start of the 21st century reveals the beginning of calculating carbon and measuring efficiency. This phase has established the measurements of CO2/m2/year as common factors in environmental evaluation of buildings. The principal indicator on building performance during this phase was based on measuring carbon emissions (Hall, Daneke, & Lenox, 2010). Governments had also joined the clamour for suitable construction through legislations especially in the developed world. Credible research had also indicated a trend where massive chunks of the housing market appreciated sustainable solutions, as global warming became a possibility. The world resources were on the verge of depletion in light of burgeoning populations (Johnson, Whittington & Scholes, 2011).
The sustainability phenomenon has resulted in an abundance of green building rating tools and frameworks around the world to evaluate property development against a collection of sustainability criteria. Green Building Councils are members of the World Green Building Council; and on its respective country are conformed by partnerships between government and private organisations that have worked in collaboration to develop Green Building rating tools. Internationally the most widely recognised rating system includes LEED, BREEAM, Green Star, CASBEE, SICES and EEWH. The sustainable building industry is shaped by the influence of the mentioned rating tools, which are mainly endorse and applicable through diverse Green Buildings Councils around the globe. Which are, LEED in the US Green Building Council (USGBC), Canada Green Building Council, Brazil Green Building Council, India Green Building Council; CASBEE in Japan; BREEAM in the UK Green Building Council; SICES in Mexico Green Building Council; EEWH in Taiwan Green Building Council and Green Star in the Green Building Council of Australia (GBCA), Green Building Council of New Zealand (NZGBC) and in the Green Building Council of South Africa (GBCSA). Although, there are many others international building tools available, the three larger rating systems in the world are LEED, BREEAM and Green Star.

Research by Dirlich (2011) demonstrates substantial disparity in terms of the global methodology (i.e. LEED, BREEAM and Green Star) to be applied in order to evaluate sustainability criteria in the building sector. This project further progresses the demonstration in subsequent sections as clear and arguably critical reasons emerge to support these differences. This discrepancy can be explained by several factors; perhaps one of the most influential is the fact that each of the rating systems was conceived and adapted to a specific geographical context that regards unique characteristics in terms of environmental conditions, politics and legislation, industry sector and socio-economic structures. For instance, BREEAM methodology is tailored, and therefore, better applied and representative when assessing the sustainability performance of the building industry in the United Kingdom than anywhere else in the world (Dirlich, 2011). Adaptation of a generic rating may also contribute to apathy in governments and demographics that are yet to ingratiate sustainability solutions. The concept, aims, and noble causes of the whole sustainability endeavour ought to be communicated world over, but development of systems upon which to implement it left to specific geographic areas notes Dirlich (2011). However, certain platforms or benchmarks may highlight the crust upon which to develop.

Furthermore, the topics for building assessment vary according to different weightings and categories. LEED 2009 grants an overall score of 110 points with a weighting system that considers 23.6% to sustainable sites, 9.1% to water efficiency, 31.9% to energy and atmosphere, 12.7% to material and resources, 13.6% to indoor environmental quality, 5.5% to innovation and design, and 3.6% to regional priority. The overall score for BREEAM 2011 goes up to 110% and its weighting system considers: 10% to land use and ecology, 6% to water, 19% to energy, 12.5% to materials, 15% to health and wellbeing, 8% to transport, 7.5% to waste, 10% to pollution, 12% to management and 10% to innovation. The overall score for Green Star 2013 is 100 points and its weighting system considers management, indoor environment quality, energy, transport, water, materials, innovation, emissions, and land use and ecology. These building weighting aspects are not fixed like LEED and BREEAM, as they change according to states and territories in order to consider diverse environmental priorities across Australia. For example, potable water has a high relevance in South Australia than the Northern Territories, and consequently the water category has a higher weighting in South Australia.

Therefore, it can be argue that a customized building rating system will be more representative and meaningful in addressing the specific context and particular requirements of the building sector in a determined country, state or territory. However, on doing this, drawback effects appear as international comparison becomes more difficult because multiple rating tools are built upon different categories and weightings. According Dixon et al. (2008), the proliferation of rating tools around the globe has created market distortions that prevent stakeholders and property investors from having a clear understanding on the implications of different sustainability methodologies. In this regard, Reed et al. (2009) point out that while it is established that states and territories possess unique characteristics, the objective of reaching a global rating tool can be achieved in a similar way. According to him, financial methodology works for analysing property values in different countries: by using a twelve-year discounted cash flow technique that considers exchange rates fluctuations, it is possible to contrast the value of an office building in Berlin directly, London, New York City, or Melbourne. In other words, a straightforward approach that relies on developing a global rating system will deliver important benefits that will facilitate the access to transparent information in the form of sustainability features and building assessment around different countries. The underpinning reasons behind not having a global rating system can be attributed to lack of knowledge and willingness to compromise towards a single rating tool since it may not be the possible best tool applicable to a wide range of states and territories. Additionally, a global rating system would not necessarily be a good solution. It is instructive to note that customization of a rating system to geographical locations, purpose of the building, legislations, cultural inclinations and resource availability is trendier than a blanket system. For example, Australia and Britains resource endowment may posit a situation where Australia does not need strict rating systems as opposed to Britain. Hence, a generalist rating system will critically disadvantage Australians.

Many developing countries have not adopted rating systems. In Africa, over 90% of the countries do not have a national rating system for construction. Going forward, as more countries embrace the need for sustainability, it will be hard to roll out a uniform Rating System considering the richness of culture in the continent. Such countries will have to grapple with a nationally developed system that will specifically cater to the cultures of its citizens. Otherwise, as noted by Olgyay & Seruto (2010) sharp divisions may emerge between governments, locals and human rights organizations, which may not serve the intended noble cause.

 

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with Essay Help Republic
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Other
Nice job!
Customer 452459, September 27th, 2022
Classic English Literature
awesome research and organization
Customer 452451, May 26th, 2022
Classic English Literature
Awesome Work. Highly recommend the writer
Customer 452461, November 21st, 2022
Mathematics
on time and very legit!
Customer 452447, May 18th, 2022
Other
i love every detail of the paper. am sure i'll get an A+
Customer 452459, September 27th, 2022
Classic English Literature
no errors and top-notch grammar
Customer 452451, May 26th, 2022
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
error: Content is protected !!
Open chat
1
Need assignment help? You can contact our live agent via WhatsApp using +1 718 717 2861

Feel free to ask questions, clarifications, or discounts available when placing an order.