Groundwater Contamination Using 3D GIS Techniques Proposal

Currently, the most important source of water for human consumption and industrial use is groundwater. Hence, it is imperative to manage groundwater resources effectively and guarantee its future presence.

This requires proper identification and management of possible threats to groundwater resources.

Don't use plagiarized sources. Get Your Custom Essay on
Groundwater Contamination Using 3D GIS Techniques Proposal
Just from $13/Page
Order Essay

Previous cases of groundwater and surface water pollution have been globally. Today, however, the major cause of concern among environmentalists and other concerned bodies is possible pollution that may emanate from toxic chemicals used in fracking.

In Western Australia, for instance, the Conservation Council of Western Australia released a map (see figure 1) to depict that fracking could possibly contaminate groundwater resources and affect the states drinking water reserves.

The map highlights more than 35 water resources, including groundwater aquifers and surface water resources used to provide water for human consumption, are at risk of gas fracking pollution. In addition, it could affect nearby water resources such as Margaret River to Geraldton and other coastal areas.

Rapid population growth has put much pressure on limited water resources.

Consequently, studies in feasibility of groundwater are vital to meet the global water demands because the surface water is increasingly becoming unreliable, unsafe and unsustainable as extreme weather patterns, pathogens and microorganism cause adverse effects (Bashir, Yusoff, & Rindam 2014).

Generally, groundwater has been regarded as the most viable option because of its quality. It is also considered fresh, and it therefore can support human life, irrigation and other industrial purposes.

The use of groundwater to support consumption has been fully exploited and therefore is below the expected levels.

The low rates of exploitation perhaps have resulted from a lack of knowledge about hydrogeological activities of water formation, movement and distribution patterns.

New technologies, however, have presented opportunities to exploit groundwater resources and evaluate potential contaminations. In this regard, the 3D (three-dimensional) Geographic Information System (GIS) techniques are vital in geologic mapping techniques applied in protection of underground water.

It assists in decision-making and the public accessing the environment of the state.

The purpose of this study is to determine groundwater contamination using 3D GIS techniques.

A map released by the Conservation Council of Western Australia showing possible quarter of the states drinking water reserves mostly likely to be affected by fracking
Figure 1: A map released by the Conservation Council of Western Australia showing possible quarter of the states drinking water reserves mostly likely to be affected by fracking (Riaz 2014)

The 3D GIS techniques are fundamental in geologic mapping approaches applied in identifying and protecting groundwater resources from contamination. It assists decision-makers of a given critical geographical location to evaluate and understand the safety of underground water for public consumption.

Hence, comprehending the geologic framework, current land use and planning are now imperative for extraction of groundwater (Arias-Estvez et al. 2008, p. 247).

Currently, the procedures used to conduct the 3D geological studies are the same and consistent and the results too are similar. This method, for instance, has been applied in

Wyoming in the US due to many wells being drilled and related hydrologic concerns relating to .

For regulators who want to control the quality of groundwater, maps of groundwater sensitivity obtained from analysis of the 3D data of geologic materials usually offer the best information for decision-making.

Therefore, in the recent past, the use of the 3D GIS for such studies has grown significantly and it is imperative to evaluation and understanding of geographical features of the ground.

Moreover, various techniques such as grid modelling, tetrahedron network model or hybrids may be applied to represent different features of hydrological systems. The GIS can be used in any computer-enabled systems to assist in mapping and analysis of ongoing activities and process-related data from a given location.

According to Arias-Estvez et al. (2008), identification and mapping of the geologic strata, groundwater exposure, aquifer vulnerability and spread of contaminant are fundamental for choosing appropriate procedures for underground water monitoring, assessing, and controlling of toxic materials.

In addition, the obtained data can be used to develop intervention plans for cleaning and protection of contaminated areas. It is noteworthy that GIS has become common in both emerging and developed countries to study underground and hydrological features.

Hence, the use of GIS to investigate groundwater exposure and potential contamination is important to study because GIS is an important tool that can assist in developing mitigating strategies for many affected sites.

Specifically, using GIS to study groundwater contamination produced visualisation, optimization of available materials and the approach is relatively cost-effective. Through visualisation software, the researcher can display the site and manage data to understand contamination patterns from different substances.

As a result, it is imperative to comprehend the current applications, use, potential interventions, challenges and finally cleanup options (Arias-Estvez et al. 2008). Optimisation of samples requires adequate number of data sample required to categorise possible contaminated zones by using programme statistical packages.

The cost advantages of GIS is realised when the method efficient in applying the cleanup methods and achieving the intended goals. In addition, the GIS would determine the extent of human exposure and potential health risks because of groundwater contaminants.

The GIS is a complex process that integrates data from various sources for analysis in order to provide an environmental decision. Such data are used to support query procedures, visualisation, manipulation and optimisation.

In addition, the two-dimensional (2D) maps have been produced to depict a given area and related surface elements. The 3D Analyst extension (ArcGIS) usually offers the ability to depict two-dimensional maps as it strives to show a quasi-three dimensional illustration of the site feature.

Normally, the analyst can share and manipulate data using the available project files that are used for various different data integration and visualisation of files.

The GIS software has ability to combine large volumes of data to create the required visual elements to assist in understanding features of the study under investigation for contaminations.

The GIS strongest features allow it to integrate with other underground water model software such as MODFLOW and MT3DMS, which have been effectively used to detect groundwater contamination. Spatial data related to boreholes, wells and aquifers alongside their related features and the aquifer field features.

The analyst can display the base of aquifer, data infiltration, layer features and the injection of well data, the spread and dispersion of data on various features under investigation and any other hydrogeologic elements of interests.

The shape of the files based on the coverage can easily be extracted from the database and resulting data is a direct representation of the groundwater for modelling using software applications such as MODFLOW and the MT3DMS.

Currently, fracking activities rely on highly toxic materials, many of which remain undisclosed to the public, but it is known that gas, fracking chemicals, drilling fluids or fracking waste can , wells and groundwater resources (Riaz 2014).

As previously mentioned, these are highly toxic chemicals, which must not be exposed to groundwater and water for human consumption.

In Western Australia, for instance, people rely on groundwater for domestic, industrial, agricultural and other purposes, and they deserve clean water not contaminated with toxic chemicals from gas fracking.

The state government has already approved gas fracking at Drover-1 next several water boreholes, which supply water to Green Head and Leeman. However, no environmental impact evaluation has been performed.

As a result, many environmentalists and other concerned stakeholders have petitioned the government to suspend fracking activities, but no major alteration plan has been communicated to the public.

Opponents of gas fracking, however, have maintained that they do not have any confidence that the current regulation regarding environmental protection and gas fracking in Western Australia are effective and therefore the call for moratorium on gas fracking in the state (Riaz 2014).

The 3D GIS techniques can help to determine the extent of groundwater contamination in Western Australia as other studies have shown. The MODFLOW simulation techniques used in the GMS (Ground Modelling Systems) can be accomplished by using either grid approach or conceptual model strategies.

The grid model requires analysts to incorporate the 3D grid and incorporate the sources or well or other forms of model elements. This model requires researchers to use integrated GIS software applications based on the given map modules as they strive to develop the basic framework for the study site.

This approach assists researchers by eliminating the need for (Wycisk et al. 2003).

Using the GIS offers several advantages to the analyst in attempts to detect groundwater contamination because of the integration with the sources of data containing queries and statistical analysis tools with geographic and visualisation capabilities.

In addition, the GIS provides the benefit of integrating other data from multiple sources, including Excel spreadsheet to enhance visualisation and manipulation. Likewise, the GIS can successfully produce 2-D maps of any given site and its related surface characteristics.

On this note, the 3-D analyst can exploit these robust features to generate a quasi-3D depiction of the region. Further, the GIS analyst can effectively share data and information from various sites with other team members.

On this note, the 3D data model would be appropriate for the study because of its robust features to integrate large volumes of geographical data and manipulate them to generate the required information.

Aims and Significance
Determine groundwater contamination zones
Create 3D Model of groundwater zones with source and distribution of pollutants
Provide the 3D maps to the water resource management authorities, so that they can take preventive measures to stop water contamination in the ground
Gas fracking will be used to extract gas at Drover-1 next to several water sources in Western Australia. Consequently, there are possibilities of contamination from the highly toxic, escaping methane gas and other chemicals used in the process.

The developed map will be highly imperative for further studies in determining possible contamination paths and effective mitigation strategies. The GIS will focus on depicting different site hydrologic features and extraction of shale gas.

By borrowing from the study conducted in Montana, Wyoming, the coverage for the study will focus on critical areas such as water wells, boreholes, springs, hydrography, fracking gas monitoring wells, fracking gas wells, and pipelines for water supply.

It is expected the study outcomes will be used to address concerns of Communities, industries, agriculture and other businesses all the way up our West Coast in Western Australia. In addition, fracking gas stakeholders will use the recommendations to improve their process and prevent potential contamination of groundwater resources.

The research will result in usable visual resources such as maps and GIS database for spatial analysis and ease of understanding for fracking gas concerns.

A study method applied by Khaled Kheder (2014) will be model for this study from a study. Based on the study site in Western Australia and its proximity to critical water supply sites such as wells and boreholes, it has been regarded as a large area. Data will be collected Drover-1, which is the study area.

Drover-1well is located 18 km southeast of Green Head, in the Shire of Coorow, Western Australia (AWE 2015). According to AWE, it successfully drilled wells in mid-2014 without any critical health, safety or environmental issues (AWE 2015).

A map of Drover-1 well
Figure 2: A map of Drover-1 well

AWE will provide critical data regarding the drilled wells. These data would be used for comparison purposes. Data for water levels, topography, maps for wells and boreholes for potability and shallow aquifer bedrock will be studied for the required insights on the flow models.

The Conservation Council of Western Australia and the WA Water Corporation have generated maps that would be useful for this study (see figure 1). In addition, they would also provide the necessary data in aid in analysis of potential pollution because of fracking gas activities.

Topography maps would be used to map the study site using appropriate scale. This would help in depicting bedrocks and other relevant features. The highest and lowest locations of Drover-1 and close water resource shall be identified. The ArcGIS Desktop application will be used to analyse the thickness of the grids of the study site.

Water tables will be identified and potability and hydraulic features will be evaluated to adjust the MODFLOW model.

Based on the map of the study area presented by the WA Water Corporation, there are over 35 water sites, which are most likely to be contaminated by toxic chemicals from gas fracking. Data for the water tables of the study area will be gathered from existing studies.

Appropriate models would be applied to determine the best calibration values for the wells based on observed values or simulated ones. Data would be analysed to achieve the expected results for aquifer features.

The second phase of data analysis would be highly complex because various data from different sources must be . Data on hydrology, geology, soil type, land use, hydraulic conductivity, planning, cover and topography would be collected from relevant databases and used in the analysis.

To understand the groundwater vulnerability to contamination, data would be obtained from existing databases. A drastic model used Saidi, Bouri, and Dhia (2010) would be applied to determine groundwater vulnerability.

Depth to groundwater, recharge, aquifer type, soil properties, topographies, influences of vadose zone and hydraulic conductivity will be combined to determine groundwater vulnerability to toxic materials from gas fracking (Saidi et al. 2010). A significantly higher value would indicate increased vulnerability or greater chances of contamination.

It is recognised that large volumes of data are involved in this study. Hence, the researcher would carefully manage data from different sources and use them in appropriate models. The spatial databases would assist in this process. It would be imperative to use interpolation techniques in specific cases in which data would be insufficient.

This would control the issues of missing data during analysis.

MODFLOW model would be applied to determine groundwater flow.

Finally, the 3D models/map development would be provided to illustration groundwater vulnerability to contamination from activities of gas fracking.

GIS 3-D model of concentration of Ni figure: sourceGIS 3-D model of concentration of Ni figure: source
Figure 3: GIS 3-D model of concentration of Ni figure: source

3D cube of the site showing porosity and permeability (can be used to predict migration with time)
Figure 4: 3D cube of the site showing porosity and permeability (can be used to predict migration with time)

Expected Outcomes of the Project
Maps representing potential vulnerability for groundwater resources will be generated through this project. These maps would be useful for future studies and understanding groundwater features of the study site. They would show vulnerability and possible impacts of toxic substances from gas fracking.

A consolidated report would be created under this project to guide policymakers and shale gas extracting firms. It is expected that the final project outcomes used to address clean water concerns and other environmental threats raised by communities and other stakeholders in Western Australia.

The project is expected to provide vital visual tools to be included in other databases. These maps and other GIS results will help the public to understand how gas fracking could possibly affect groundwater resources and other environmental resources.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with Essay Help Republic
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Nice job!
Customer 452459, September 27th, 2022
Classic English Literature
awesome research and organization
Customer 452451, May 26th, 2022
i love every detail of the paper. am sure i'll get an A+
Customer 452459, September 27th, 2022
on time and very legit!
Customer 452447, May 18th, 2022
Classic English Literature
Awesome Work. Highly recommend the writer
Customer 452461, November 21st, 2022
Classic English Literature
no errors and top-notch grammar
Customer 452451, May 26th, 2022
Customer reviews in total
Current satisfaction rate
3 pages
Average paper length
Customers referred by a friend
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
error: Content is protected !!
Open chat
Need assignment help? You can contact our live agent via WhatsApp using +1 718 717 2861

Feel free to ask questions, clarifications, or discounts available when placing an order.