Hormonal Mechanism and Intracellular Effects of Insulin

was previously referred to as as well as adult-onset diabetes. Diabetes type II is a metabolic disorder that influences the glucose metabolism process by the body. The body resisting the impact of insulin as well as producing less insulin to maintain normal glucose levels characterizes the condition (Goldstein and Mueller-Wieland 5). In other words, the metabolic disorder is exemplified by high blood glucose due to insulin resistance as well as comparative insulin deficit.

Of all the cases of diabetes, diabetes type II accounts for 0.9 of the cases. Further, obesity in individuals that are genetically subjected to the condition is the main source of diabetes type II. The development of diabetes type II is also caused by anxiety and a poor diet characterized by excess consumption of sugar-sweetened foods. Individuals suffering from the condition often experience recurrent urination, increased thirst, polyphagia, and loss in weight. The conditional can result in cardiovascular diseases, limb amputations as well as kidney failure (Goldstein and Mueller-Wieland 33). Regular workouts and an appropriate diet are significant in the prevention of diabetes type II.

Don't use plagiarized sources. Get Your Custom Essay on
Hormonal Mechanism and Intracellular Effects of Insulin
Just from $13/Page
Order Essay

Hormonal mechanism
The reduced capability of the body cells to respond to the activities of insulin is regulated by intracellular and . The types of receptors in the activities of insulin include ion channel-linked receptors including calcium ions and enzyme-linked receptors such as tyrosine kinase receptors. Alpha and beta subunits make up the insulin receptor. Disulfide bonds join the subunits of insulin receptors together. The former subunits are extracellular and whereas the latter subunits infiltrate through the plasma membrane. The pancreas plays the role of producing insulin. Additionally, the pancreas moves the hormone from the bloodstream into the body cells to be utilized for energy. In diabetes type II, the resistance to insulin is a critical aspect. In essence, the glucose that builds up in the bloodstream and the body cells is unable to operate efficiently (Goldstein and Mueller-Wieland 15). During the regulation of glucose metabolism, multifaceted signaling interfaces between fat, liver, and muscle tissues as well as brain tissues occur.

When there is high glucose sugar, the insulin combines with the receptor tyrosine kinase on the cell surface. The receptor transports phosphate groups from ATP to tyrosine deposits on intracellular target proteins. The receptor then undergoes endocytosis. The islets of Langerhans release excess insulin to achieve homeostatic levels in the blood. The increase in blood insulin causes the receptor to diminish the number of insulin receptors thereby increasing the hormone resistance through the decrease of insulin sensitivity leading to diabetes type II.

Essentially, the binding of receptor kinase decreases the activity of the insulin receptor complex. As such, the combination of the signaling effectors to the insulin is reduced because of condensed phosphorylation sites on the insulin receptor as well as inhibition of response on the signaling molecules (Goldstein and Mueller-Wieland 56). Feedback inhibition on the signaling molecule thwarts joining to insulin receptor thereby leading to malfunctioning downstream activation of kinase flow and second messenger indicating passageway. Consequently, decreased glucose transporter fusion to the cell membrane and less transported glucose in the body cells occur.

The activation of second messengers including Ca2+ ions, phosphoinositides, and diacylglycerol is also a common mechanism of . The messengers move freely through the cytoplasm as well as the membrane. When the second messengers are released, signal intensification, as well as augmented speed in signal transduction, is achieved due to simultaneous interactions with numerous targets in the cells. The receptor makes active a pair of second messenger pathways by breaking phosphoinositide into diacylglycerol and calcium ions (Goldstein and Mueller-Wieland 37). For instance, the Ca2+ ions from the endoplasmic reticulum diffuse through the cell activating other signaling molecules thereby initiating cellular feedback.

Intracellular effects of insulin
Insulin plays a critical role in regulating the delivery of glucose in the body cells to provide energy. As such, in the case of diabetes type II, the cells are unable to absorb glucose and amino acids. The deficiency in the quotient of insulin and glucagon slows down glycolysis. The inhibition of glycolysis reduces energy production (Roper 114). In other words, insulin holds back the discharge of glucagon thereby halting the utilization of fats as a source of energy. Additionally, insulin leads to the control of glucose levels in the blood at a stable ratio.

Actually, insulin is significant in endocrine metabolism. The hormone has diverse cellular effects on the regulation of glucose levels in the blood. Specifically, insulin is invaluable in enhancing the progress of glucose admission into a muscle as well as adipose tissues. Most importantly, hexose transporters make easy the mechanisms through which cells absorb glucose. In particular, the action of insulin is essential for availing GLUT4, the transporters utilized in the uptake of glucose in the plasma membrane (Roper 112). Further, insulin facilitates the process through which amino acids are absorbed for energy and balance in blood sugar at different levels of the hormone.

In circumstances where the concentrations of insulin are stumpy, the GLUT4 transporters play a worthless role in transporting glucose in the cytoplasm vesicles. In fact, the joining of insulin to receptors initiates the fusion of vesicles together with the plasma membrane as well as the incorporation of the GLUT4 transporters. Consequently, the blood cells are capable of taking up glucose effectively.

Another significant cellular impact of insulin is that the hormone facilitates the storage of glucose as glycogen. In essence, insulin triggers hexokinase that traps glucose through phosphorylation. Essentially, insulin hampers the action of glucose-6-phosphatase while activating the activities of phosphofructokinase and glycogen synthase enzymes that are significant in the synthesis of glycogen (Roper 82).

Generally, the effect of insulin entails the lessening of glucose concentration in the blood cells. In other words, the take-up of glucose by body cells for energy depends on the availability of insulin. Additionally, insulin hampers the crashing of adipose tissue by slowing intercellular activities. When the breakdown of fat in adipose tissue is inhibited, hydrolysis of triglycerides to release fatty acids is thwarted.

How diabetes type II affects glucose regulation mechanism
Diabetes type II significantly influences how the body cells normalize blood glucose levels. For instance, in diabetes type II patients, the body is incapable of standardizing the blood glucose levels since there is ineffective functioning between insulin and glucagon. In other words, the body resists insulin, which leads to higher glucose levels in the body and comparative insulin deficit. As a result, excessive insulin is released by the insulin-secreting tumor called insulinoma in the pancreas (Roper 77). The excess release of insulin can be hazardous life since there is a rapid drop in glucose blood levels leading to insulin shock in the brain due to starvation of energy. Additionally, high glucose in the blood cells has adverse effects on glucose metabolism ranging from hardening of arteries to hyperosmolar nonketotic diabetic coma.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with Essay Help Republic
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Classic English Literature
no errors and top-notch grammar
Customer 452451, May 26th, 2022
Nice job!
Customer 452459, September 27th, 2022
Classic English Literature
Awesome Work. Highly recommend the writer
Customer 452461, November 21st, 2022
Classic English Literature
awesome research and organization
Customer 452451, May 26th, 2022
on time and very legit!
Customer 452447, May 18th, 2022
i love every detail of the paper. am sure i'll get an A+
Customer 452459, September 27th, 2022
Customer reviews in total
Current satisfaction rate
3 pages
Average paper length
Customers referred by a friend
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
error: Content is protected !!
Open chat
Need assignment help? You can contact our live agent via WhatsApp using +1 718 717 2861

Feel free to ask questions, clarifications, or discounts available when placing an order.